Radiative Corrections to Higgs Production: How accurate are our predictions?

S. Dawson
University of Washington
January, 2009

Higgs Production

- How well do we know cross sections?
- What assumptions go into plots?

Bands are scale dependence only in this plot

Branching Ratios

- Bands are theory uncertainty
 - Includes all known higher order corrections
 - Largest uncertainty from $m_b = 4.88 \pm .07$ GeV

FEYNHIGGS, HDECAY include known higher order corrections

Can we use Higgs rates to distinguish between models?

$$L_{eff} = -c_g 2\pi\alpha_s \left(\frac{v}{\Lambda}\right)^2 \frac{H}{v} G_{\mu\nu}^A G^{\mu\nu A}$$

ILC Measurements

Yellow band corresponds to new physics on the 1-5 TeV scale

CMS SM Higgs, 2008

Gluon Fusion

Largest rate for all M_H at LHC

- Sensitive to top quark Yukawa λ_t

Lowest order cross section:

$$\hat{\sigma}_0(gg \to h) = \frac{\alpha_s(\mu_R)^2}{1024\pi v^2} \left| \sum_q F_{1/2}(\tau_q) \right|^2 \delta(M_h^2 - \hat{s})$$

- $-\tau_{q}=4M_{q}^{2}/M_{H}^{2}$
- Light Quarks:

$$F_{1/2} \rightarrow (M_b/M_H)^2 log(M_b/M_H)$$

- − Heavy Quarks: $F_{1/2} \rightarrow -4/3$
- Counts # heavy generations

In SM, b-quark loops unimportant

Largest contribution is top loop

Rapid approach to heavy quark limit

Gluon Fusion

Hadronic cross section

$$\sigma(s, M_H) = \sum_{ij} \int_0^1 dx_1 \int_0^1 dx_2 f_i(x_1, \mu_F) f_j(x_2, \mu_F) \int dx \delta \left(1 - \frac{M_H^2}{x_1 x_2 s}\right) x \hat{\sigma}_{ij}$$
• QCD corrections

- - Dominated by heavy top loops
 - NLO cross section known for arbitrary top quark mass
 - NNLO cross section known only in $M_t \rightarrow \infty$ limit

Overview

- NLO QCD corrections large (increase LO rate by 80-100%)
- NNLO corrections to σ increase rate by 15-20% for M_H < 200 GeV
- Soft gluon resummation increases rate by ~ 6%
- EW corrections increase rate by ~ 5%

Corrections all increase cross section

$M_t \rightarrow \infty$ Excellent Approximation for NLO gg \rightarrow H rate

Kraemer, Laenen, Spira, hep-ph/9611272

Effective Lagrangian Approach

For heavy top, integrate out top

$$L = C_t(m_t, \mu) \frac{H}{v} \frac{\alpha_s(\mu)}{12\pi} G_{\mu\nu}^{A} G^{\mu\nu A}$$

C_t known to NNLO

$$C_{t}(m_{t}, \mu) = 1 + \frac{\alpha_{s}(\mu)}{4\pi} (5C_{A} - 3C_{F}) + \left(\frac{\alpha_{s}(\mu)}{4\pi}\right)^{2} (....)$$

Generates effective vertices

Known

Kramer, Laenen, Spira, arXiv:hep-ph/9611272, Chetyrkin, Kniehl, Steinhasuser, arXiv:hep-ph/9705240

NNLO Result

- Only in large M_t limit
 - Normalize to exact LO result

Harlander & Kilgore, hep-ph/0201206; Ravindran, Smith, & van Neerven, hep-ph/0409088; Anastasiou & Melnikov, arXiv:0207004

Scale Dependence Poor Estimate of Uncertainty

 $M_H/2 < \mu_R, \, \mu_F < 2 \, M_H$

Soft Contribution

- Why should large M_t limit work?
- Much of the correction comes from soft contribution (which doesn't resolve top quark

Kilgore and Harlander

Electroweak Contributions

Enhanced by N_{If}, No Yukawa suppression

$$L_{eff} = \frac{\alpha_s}{12\pi} \frac{H}{v} C_1 G_{\mu\nu}^{\ A} G^{\mu\nu A}$$

$$C_1 = 1 + \alpha_s C_a + \alpha_s^2 C_b + \delta_{EW}$$

$$\delta_{EW} = \frac{3\alpha}{16\pi s_W^2} \left[\frac{2}{c_W^2} \left(\frac{5}{4} - \frac{7}{3} s_W^2 + \frac{22}{9} s_W^4 \right) + 4 \right]$$

Aglietti, Bonciani, Degrass, Vicini, arXiv:0404071, Actis, Passarino, Sturm, Uccirati, arXiv:0809.1301

Electroweak Contributions

Scale variation, $M_H/2 <\!\! \mu_R,\, \mu_F < 2~M_H$

Actis, Passarino, Sturm, Uccirati, arXiv.0809.1301

Do EW/QCD Corrections Factorize?

Can we write:

$$C_1 = (1 + \delta_{EW})(1 + \alpha_S C_a + \alpha_S^2 C_b)$$

$$C_{1} = 1 + \alpha_{S}C_{a} + \alpha_{S}^{2}C_{b} + \delta_{EW}\left(1 + \alpha_{S}C_{a,EW} + \alpha_{S}^{2}C_{b,EW}\right)$$
Unknown

Mixed QCD-EW Effects

- Do EW effects receive large QCD enhancements?
 - Exact calculation requires 3-loop diagrams with many mass scales
 - Compute $C_{a,EW}$ in limit $M_H/M_W << 1$
 - C_{a,EW}=7/6 (would be 11/4 if QCD-EW factorized)

EW-QCD Factorization Good Approximation

Factorization approximation works well

q_T distribution of Higgs

- Gluon fusion produces Higgs with no q_T at LO
- Non-zero q_T first at $O(\alpha_S^3)$ from $gg \rightarrow Hg$
- Large M_t valid for q_T< M_H, M_t
- NLO QCD known in large M_t for gg→Hg

Re-Sum Soft Gluons

- Large q_T, fixed order calculation valid
- Most events at small q_T where large logs, $\alpha_S^n ln^{2n} M_H^2/q_T^2$, must be resummed to all orders
- Resummed calculation at low q_T matched to fixed order at large q_T

Bozzi, Catani, deFlorian, Grazzin, 2003, hep-ph/0508068, arXiv:0707.3887

Soft Resummation

Catani, Grazzini, de Florian, Nason, 2003

N³LO Soft Terms

Improves scale dependence

Moch, Vogt; Laenen, Magnea (2005)

PDF Uncertainties in gg→H

NLO cross section with $\mu_R = \mu_F = M_H$

PDF uncertainty of CTEQ6M fit

Hsieh & Yuan, ArXiv:0806.2608

New PDFS

• MSTW2008

Beyond Large M_t

- Compute large ŝ limit for gg→H
- Use NLO as testing ground
- Idea:
 - High energy behavior is different for pointlike ggH effective vertex and true vertex with resolved top

$$\hat{\sigma}_{gg} \approx \hat{\sigma}_{LO} \left(\delta(1-x) + \frac{\alpha_S}{\pi} B(x, M_t) \right) \qquad x = \frac{M_H^2}{\hat{s}}$$

$$B(x, \infty) \approx \ln(x)$$

$$B(x, M_t) \approx \text{constant}$$
High energy limits

Construct interpolating function

Marzani, Ball, DelDuca, Forte, Vicini, arXiv:0801.2544

Beyond the Large Mt Limit

	K _{NLO}	K _{NNLO}
	M _H =130 GeV	
Large M _t	1.800	2.140
Exact	1.797	
Approx.	1.796	2.136
	M _H =280 GeV	
Large M _t	1.976	2.420
Exact	1.958	
Approx.	1.959	2.394

Marzani et al, arXiv: 0809.4934

Sum π^2 and Soft Logs

Series of effective field theories

Integrate out hard gluons

Use Renormalization Group

• Sum terms $(C_A\pi\alpha_s)^n$

- Resummed > fixed order by 8% (M_H=120 GeV)
- Note: Same PDFs used for all curves

Ahrens, Becher, Neubert, Yang, arXiv:hep-ph/0808.3008, 0809.4283

b Contribution to NLO

 b-loops receive smaller QCD NLO contribution than top loops in gluon fusion for M_H < 2 M_t

Harlander

How big are the uncertainties?

- Goal: put it all together
- MRST2006 NNLO PDFs
- Top contribution to NNLL+NNLO in large M_t limit (normalized to exact LO)
- Bottom and b-t loops at NLO with exact mass dependence
- EW corrections assuming factorization

Best Estimates

- Grazzini (Zurich)
 - wrt previous results, +30% for M_H =115 Gev, +6% for M_H =300 GeV
 - MRST2008 PDFs have small effect at LHC

M _H	σ _{NNLL+NNLO} (pb)	Scale	PDF
120	54.52	+5.13, -5.35	+.91, 96
130	47.53	+4.33, -4.53	+.76, 81
150	37.11	+3.18, -3.36	+.53, 58

Scale uncertainty ≈ 10%

Beyond Total Cross Sections

Estimates of scale dependence inadequate

Higher order corrections change shapes

Distributions to NNLO

- Do cuts change effects of higher order QCD?
 - Effects of higher order QCD reduced with jet veto
- HNNLO, FEHIP: NNLO MCs
 - NNLO with experimental cuts for $H\rightarrow\gamma\gamma$, $H\rightarrow WW\rightarrow lvlv$, $H\rightarrow ZZ$

NNLO Monte Carlos

NNLO MC for gg \rightarrow H $\rightarrow\gamma\gamma$

Photons isolated: Total energy in cone of ΔR =.3 less than 6 GeV

Note impact of NNLO corrections

NNLO, $H \rightarrow \gamma \gamma$ with cuts

• $gg \rightarrow H \rightarrow \gamma \gamma$

m_h	$\sigma_{ m NNLO}^{ m cut}/\sigma_{ m NNLO}^{ m inc}$	$K_{\text{cut}}^{(2)}/K_{\text{inc}}^{(2)}$
110	0.590	0.981
115	0.597	0.968
120	0.603	0.953
125	0.627	0.970
130	0.656	1.00
135	0.652	0.98

$H \rightarrow W^+W^- \rightarrow l\nu l\nu$ @ NNLO

- Example: M_H=165 GeV
- No cuts, $K_{NLO}=1.84$, $K_{NNLO}=2.21$ ($\mu=M_H$)
- Simple pre-selection cuts, K_{NLO}=1.83, K_{NNLO}=2.19
 - $-p_{TI} > 20 \text{ GeV}, |y| < 2, p_{Tmiss} > 20 \text{ GeV}, M_{II} < 80 \text{ GeV}, \Delta \phi_{II} < 135^{\circ}$
- Selection cuts significantly reduce size of higher order contributions, K_{NLO}=1.19, K_{NNLO}=1.11
 - p_{Tmin,I} > 25 GeV, 35 GeV < p_{Tmax,I} < 50 GeV, M_{II} < 35 GeV, $\Delta \phi_{II}$ <45°, no jets with p_T>p_{Tveto}

Grazzini, arXiv:0801.3232, Anastasiou, Dissertori, Stockli, arXiv:0707.2373, Anastasiou, Dissertori, Stockli, Webber, arXiv:0801.2682

$H \rightarrow W^+W^- \rightarrow l\nu l\nu$ @ NNLO

Band is wider at NLO than LO!

Grazzini, arXiv:0801.3232, Anastasiou, Dissertori, Stockl, arXiv:0707.2373

$gg \rightarrow H \rightarrow ZZ \rightarrow 41 @ NNLO$

QCD corrections tend to make distributions harder

Cuts:

 $p_{T1} > 30 \text{ GeV}, p_{T2} > 25 \text{ GeV},$ $p_{T3} > 15 \text{ GeV}, p_{T4} > 7 \text{ GeV},$ $|y_I| < 2.5$, leptons isolated, $81 \text{ GeV} < m_{II1} < 101 \text{ GeV},$ $40 \text{ GeV} < m_{II2} < 110 \text{ GeV}$

M_H=200 GeV MRST2004 with cuts $\mu_{\mathrm{F}} = \mu_{\mathrm{R}} = \mathrm{M}_{\mathrm{H}}$ 0.6 σ/bin (fb) 0.2 40 20 20 60 80 100 40 80 100 p_{T1} (GeV) p_{T2} (GeV) 0.8 0.6 σ/bin (fb) **NNLO** -- NLO LO 0.2 0.0 40 100 20 40 80 80 100 p_{T3} (GeV) p_{T4} (GeV)

Grazzini, arXiv:0801.3232

Vector Boson Fusion

- QCD NLO corrections increase LO rate by 5-10%
 - Available in VBNLO program
- Implemented for distributions
 - Many of the backgrounds also known at NLO (Zeppenfeld et al)
- Important channel for extracting couplings

gg→ggH

- Large contributions from gg→ggH
 - Known exactly at one-loop
 - NLO known in large M_t limit
 - Renormalization scale dependence at NLO larger than expected (~ 35%)

M _H (GeV)	115	160
σ_{LO} (fb)	271	172
σ_{NLO} (fb)	346	236
σ_{VBF} (fb)	911	731

Campbell, Ellis, Zanderighi, arXiv:0608194, Del Duca, Kilgore, Oleari, Schmidt, & Zeppenfeld, arXiv:0108030

gg→ggH

- NLO effects can be included with K-factor
- Inclusive cuts:
 - $p_{Tjet}>40 \text{ GeV}, |\eta_{jet}|<4.5,$ $R_{jet,jet}>0.8$
- gg cross section much larger than VBF rate

M _H (GeV)	115	160
σ _{LO} (pb)	3.50	2.19
σ _{NLO} (pb)	4.03	2.76
σ_{VBF} (pb)	1.77	1.32

Vector Boson Fusion

- Cuts effective at separating VBF signal from gg→ggh
 - Require tagging jets well separated in rapidity and in opposite hemispheres

Campbell, Ellis, Zanderighi, arXiv:0608194, Del Duca, Frizzo, Maltoni, JHEP05 (2004) 064

gg→ggH vs VBF

Fourth generation would enhance ggH pollution

Zeppenfeld

QCD & EW Corrections to VBF

- EW corrections same size as QCD
- Cancellations for small M_H
- Cuts suppress cancellations

Ciccolini, Denner, Dittmaier, arXiv:0710.4749

Beyond the SM

- MSSM is good test case
- New production mechanisms
- SUSY discovered with b's in much of parameter space

SUSY Higgs Rates at the LHC

New Higgs Discovery Channels

Two Schemes for PDFs:

- 4 flavor number scheme
 - No b quarks in initial state
 - Lowest order process involving Higgs and b's is gg→bbH
- 5 flavor number scheme
 - Define b quark PDFs (absorbs large logarithms)
 - Higgs produced with no p_T at lowest order ($b\bar{b}$ →H)
 - Higgs p_T generated at higher orders in expansion

pp→ bbh: 1 b tag

- Compare 5 flavor number scheme (b PDFs) with 4 flavor number scheme (no b PDFs) for total rates
- Consistent results in two schemes

PDF/Scale Uncertainties

• bg→bH @ LHC (SM)

Dawson, Jackson, Reina, Wackeroth, hep-ph/0508293

SQCD Contributions

Squark and gluino loops relevant for moderate masses, effects decouple for large gluino mass

Dawson & Jackson, arXiv:0709.4519, Muhlleitner, Rzehak, Spira, arXiv:0812.3815

Scheme Dependence at NLO

•NLO calculation in on-shell and MS-bar schemes (difference is higher order, but numerically significant)

Conclusions

- Goal: Try to assess theoretical errors on Higgs production rates in SM
- Can you say anything about new physics from rates alone?